


11.2 Rolling as Translational and
Rotation Combined

Motion of Translation : i.e.motion along a straight line
Motion of Rotation : rotation about a fixed axis

Pure Translation Motion + Pure Rotation Motion = ROLLING MOTION

Translation of COM  Rotation around COM

Smooth Rolling
of a Disk

Fig. 11-2 A tume-exposure photograph ot a rolling disk. Small hghts have been at-
tached to the disk, one at its center and one at its edge. The latter traces out a curve called
a cycloid. (Richard Megna/Fundamental Photographs)




11.2 Rolling
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11.2 Rolling

(@) Pure rotation
—_—
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COI

V=

com
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Every point on the wheel
rotates about com with angular
speed of ®

Everypoint outmost part of the
wheel has linear speed of v;

—>

—>
Where v=wR =v_,

=YV

+ (b) Pure translation

_3 com
= Yeom

com

All points on the wheel
move to the right Wiﬂl>
same linear velocity, v,

( ¢) Rolling motion

— —
V= 2vmvm

— —

V=="VYeom* Veom = 0

At the bottom of the wheel
(point P), the portion of the
wheel is stationary

The portion at the top (point T)
moving at a speed 2v,

At points B and D, the speeds
are smaller than the point T.



11.2 Rolling

" Rolling can be considered as pure rotation around contact point P.
(V,=0)

— Rotational inertia about com: I,

(57 \ | — Rotational inertia about point P:
| COm >’

IP = Icom + MR2

M : mass of the wheel,

I, : rotational inertia about an axis through its center of mass

R : the wheel’s radius, at a perpendicular distance h).

Rotation axis at P
(V,=0)



11.3 The Kinetic Energy of Rolling

If we view the rolling as pure rotation about an axis through P, then;

o: angular speed of the wheel
I, : rotational inertia of the wheel about the axis

* =1, +MR> = K=%I__ 0>+%MR? >

inserting v (V.,,, = ®R), then;

com (

com

Rotation axis at P
(V,=0)

K.E of ROLLING: Rotational kinetic energy + Translational kinetic energy



11.4: The Forces of Rolling: Friction and Rolling

A wheel rolls horizontally without sliding while accelerating with linear acceleration
a..m- A static frictional force f; acts on the wheel at P, opposing its tendency to slide.

The magnitudes of the linear acceleration a_ ., and the
angular acceleration o can be related by;
dv,, = dwgy
Veom = @R = A = Frai dtR = aR
(oom = @R (smooth rolling motion)

R :the radius of the wheel.
a : angular acceleration

" Rolling 1s possible when there is friction between the surface and the rolling
object.
" The frictional force provides the torque to rotate the object.




11.4: The Forces of Rolling: Friction and Rolling

If the wheel slides when the net force acts on 1t, the frictional force
that acts at P in Fig. 1s a kinetic frictional force, f, . The motion then is
not smooth rolling, and the above relation does not apply to the
motion.

Sliding of wheel — Motion is not smooth rolling




11.4: The Forces of Rolling: Rolling Down a Ramp

A round uniform body of radius R rolls down a ramp. The forces that act on it are the
gravitational force F,, a normal force Fy, and a frictional force f; pointing up the ramp.

F\".'

Forces Fy and Fgcos 6
merely balance.

The torque due to E

Forces Fgsin 8 and fs ?1, sin 6 —
determines the

determine the linear

acceleration down x angular acceleration
the ramp. around the com.
)
P}ﬂ,cc-s )
- .
Fg B
Thet — la m—) Rf& — ‘JEDI'I]H g 5]1’] ﬁ
Aeomax | Aeomax — 2
Aeom = Eit‘Rf —Nﬂ — _Icc:m R?2 l + fcﬂmf'llMR




11.4: Rolling Down a Ramp

M
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Sample problem:
Rolling Down a Ramp

A uniform ball, of mass M=6.00 kg and radius R, rolls smoothly from rest down a ramp at
angle 9=30.0°.
a) The ball descends a vertical height h=1.20 m to reach the bottom of the ramp. What is

its speed at the bottom?
b) b) What are the magnitude and direction of the frictional force on the ball as it rolls

down the ramp?

Forces Fpy and Fg cos 6
merely balance.

The torque due to ?5
determines the
angular acceleration
around the com.

Forces Eg sin 8 and E; T'irsin 6
determine the linear
acceleration down

the ramp.




11.6: Torque Revisited

2]
2

Cross rinto F.
TorqueTis in the
positive z direction.

_ F[ redrawn, with

L4

0 \/ . tail at origin) y
0 F =
A —A
: Line of action of F
X - o P
(a) (b (0
— g
e T 4 c
T=T X F (torque defined).
= rI'sin o,

Figure (a) A force F, lying in an x-y plane, acts on a particle at point A. (b) This force produces a
torque T = r X F on the particle with respect to the origin O. By the right-hand rule for vector

(cross) products, the torque vector points in the positive direction of z. Its magnitude is given by
in (b) and by rF, in (¢).r, F

CHECKPOINT 3 The position vector 7 of a particle points along the positive directi
of a z axis. If the torque on the particle is (a) zero, (b) in the negative direction of x,
(c) in the negative direction of y, in what direction is the force causing the torque?



Sample problem:
Torque on a particle due to a force

In figure 11-11.a, three forces, each magnitude 2.0 N, act on a particle. The particle is in the xz
plane at a point A given by position vector r, where r = 3.0 m and g = 30°. Force F is parallel to
the x axis, force F, 1s parallel to the z axis, and F; is parallel to the y axis. What is the torque,
about the origion O, due to each force?

Fig. 11-11
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11.7 Angular Momentum

C(=7xp)
ﬁ (redrawn, with f
tail at origin)

Extension of F

(b)

Fig. 11-12 Defining angular momen-

tum. A particle passing through point A has

linear momentum 7 (= mv). with the vec- v _ = — — —

tor p lying in an _r‘v!plane.The particle has £ =T X P = ”1( rxXw ) (angular momentum dEﬁHEd)*
angular momentum € (= 7 X p) with re-

spect to the origin O. By the right-hand

rule, the angular momentum vector points )

in the posi_tbive direction of z. (a) The mag- ,E = Fmyv sin d} = f-‘pl — -””UJ_ = -"J_p = JJ_”T V
nitude of € is givenby € = rp, = rmv,.

(b) The magnitude of € is also given by

€=r.p=r._mv.



11.7 Angular Momentum

CHECKPOINT 4 In part <= -_ e
a of the figure, particles 1 and 2 -

move around point O in opposite [ <~ ﬁ“x\l N

directions, in circles with radn 2 m [ ' Qe J 1‘, 08— — - gt T
and 4 m. I part b, particles 3 and '\ et 5

4 travel in the samz direction, "-Kqﬁé’ S il ek 5 ;—'?‘ —=ul
along straight lines at perpendicu-  “~___ __-~

lar distances of 4 m and 2 m from (a) (b)

point . Particle 5 moves directly

away from O. All five particles have the same mass and the same constant speed. (a) Rank
the particles according to the magnitudes of their angular momentum about point O,
greatest first. (b) Which particles have negative angular momentum about point O?



Sample problem:
Angular Momentum

Figure 11-13 shows an overhead view of two particles moving
at constant momentum along horizontal paths. Particle 1. with
momentum magnitude p, = 5.0 kg - m/s, has position vector 7,
and will pass 2.0 m from point O. Particle 2, with momentum
magnitude p, = 2.0 kg - m/s, has position vector 7, and will pass
4.0 m from point O. What are the magnitude and direction of
the net angular momentum L about point O of the two-
particle system?

Fig. 11-13 Two particles
pass near point O.




11.8: Newton’s 2"4 Law in Angular Form

Newton’s 2" Law for translation

—s dp
Fnet = Tp (Single particle)
[

Newton’s 2™ Law for ANGULAR FORM;

" The (vector) sum of all the torques acting on a particle is equal to the time rate of
change of the angular momentum of that particle.

_1.
= dt PROOF:
Taot — : (single particle) Fem 7y, AL _ m(? v ar
[ dt dt dt
=m(rXa+vXxYV)
=m(r Xd) =7 X md
%:?x Fi = 2(7 X F)
4
\_Y_}



Sample problem:
Torque, Penguin Fall

In Fig. 11-14, a penguin of mass /n falls from rest at point A, gg 11147

a horizontal distance D from the origin O of an xyz coordi-
nate system. (The positive direction of the z axis is directly
outward from the plane of the figure.)

(a) What is the angular momentum € of the falling penguin
about O7

(b) About the origin O, what is the torque on
the penguin due to the gravitational force ?

l

-
=l 1O

==



11.9: The Angular Momentum of a System of Particles

The total angular momentum L of the system is the (vector) sum of the angular
momenta / of the individual particles (here with label i):

L=¢,+%¢,+ ¢+ +¢,. =Y 7.
i=1

With time, the angular momenta of individual particles may change because
of interactions between the particles or with the outside.

4

-3

df i

M
E el:

Therefore, the net external torque acting on a system of particles is equal to the
time rate of change of the system’s total angular momentum L.

- dL

Thet — (?if

(system of particles)



11.10: Angular Momentum of a Rigid Body Rotating

About a Fixed Axis

Fig.11-15 cl;‘;ﬂ

)

()

a)

b)

A rigid body rotates about a z axis with angular
speed ®. A mass element of mass Am; within
the body moves about the z axis in a circle with
radius 7.i . The mass element has linear
momentum p; and it is located relative to the
origin O by position vector r,. Here the mass
element is shown when r.; 1s parallel to the x
axis.
The angular momentum L, with respect to O, of
the mass element in (a). The z component / ., 1s
also shown.

€; = (r)(p)(sin 90°) = (r;)(Am; v;)

€, = {€;sin @ = (r;sin 0)(Am; v;) = r ; Am; v,

!
n
= 24 = S Amviry = S Amar

i=1 i=1

= w ( 2 Am,—rf,—).

vi=1

L=1w (rigid body, fixed axis).



11.10: Angular Momentum of a Rigid Body Rotating
About a Fixed Axis

ECKPOINT 6 In
figure, a disk, a hoop, pijsk f

g a solid sphere are
de to spin about fixed
ral axes (like a top) by
ans of strings wrapped around them, with the strings producing the same constant
sential force F on all three objects. The three objects have the same mass and ra-
_and they are initially stationary. Rank the objects according to (a) their angular
nentum about their central axes and (b) their angular speed, greatest first, when
strings have been pulled for a certain time .




11.11: Conservation of Angular Momentum

If the net external torque acting on a system 1s zero, the angular
momentum L of the system remains constant, no matter what
changes take place within the system.

. dL _. a ; |
Tra — T Toet = 0 = a =0 =—= L = aconstant (1solated system)

|

L, = Lf (1solated system)

1 Depending on the torques acting on the system, the angular momentum of the system might be
conserved in one or two directions but not in all directions. This means that if external torque along
an axis 1s zero then L is constant.



11.11: Conservation of Angular Momentum

If the component of the net external torque on a system along a certain axis 1s zero,
then the component of the angular momentum of the system along that axis cannot
change, no matter what changes take place within the system.

Fig. 11-16 Fa
me

I!'{UI' — ]f{u_f'

Rotation axis

(a)

(a) The student has a relatively large rotational inertia about the rotation axis and a
relatively small angular speed.

(b) By decreasing his rotational inertia, the student automatically increases his
angular speed. The angular momentum of the rotating system remains
unchanged.



11.11: Conservation of Angular Momentum




Sample problem

In Fig. 11-21, a cockroach with mass m rides on a disk of mass
6.00m and radius R. The disk rotates like a merry-go-round
around its central axis at angular speed w; = 1.50 rad/s. The
cockroach 1s initially at radius r = 0.800R, but then it crawls
out to the rim of the disk. Treat the cockroach as a particle.
What then is the angular speed?

Fig. 11-21
’ fo’mi

Rotation axis



11.10: Corresponding Variables and Relations for Translational
and Rotational Motion?

Translational Rotational
. —» g —>
Force f & Torque T(=T X F)
a —_— -3
Linear momentum p Angular momentum € (=7 xp)
. —_— —_—
Linear momentum?” P(=3Xp,) Angular momentum” L{(= E?}}
- = "
Linear momentum? P=Mv, Angular momentum?® L=1Iw
— —
i i s dP . 5 . dL
Newton’s second law Foot = Newton's second law Trnet = ——
dt dt
: d D - i g
Conservation law P = a constant | Conservation law’ L. = a constant

“See also Table 10-3.

*For systems of particles, including rigid bodies.

“For a rigid body about a fixed axis, with L being the component along that axis.
9For a closed, isolated system.



