
 

Chapter 15 

Oscillations 
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15.1 Oscillatory 

motion 

Motion which is periodic in time, that is, motion that                    

repeats itself in time. Harmonic. 

In the figure snapshots of a simple oscillatory 

system is shown. A particle repeatedly moves 

back and forth about the point x=0. 

 

The time taken for one complete oscillation is 

the period, T. In the time of one T, the system 

travels from x=+xm, to –xm, and then back to 

its original position xm.  

 

The velocity vector arrows are scaled to 

indicate the magnitude of  the speed of the 

system at different times. At x=±xm, the 

velocity is zero. 

15.2 Simple Harmonic Motion 



Frequency of oscillation is the 

number of oscillations that are 

completed in each second. 

 

The symbol for frequency is f, and 

the SI unit is the hertz (abbreviated 

as Hz). 

 

It follows that  
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If the motion is a sinusoidal function of time, it is called simple 

harmonic motion (SHM). 
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• xm is the amplitude (maximum 

displacement of the system) 

• t is the time 

  is the angular frequency, and  

  is the phase constant or phase 

angle 



15.2 Simple Harmonic Motion 

different in 

amplitudes, same 
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The value of the phase constant term, , depends on the value of 

the displacement and the velocity of the system at time t = 0.  



For an oscillatory motion with period T,  
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The cosine function also repeats itself when the argument 

increases by 2p. Therefore,   
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Here,  is the angular frequency, and measures the angle 

per unit time.  (: radians/second,  : radians) 
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15.2 Simple Harmonic 

Motion 

•The velocity of SHM:  
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•The acceleration of SHM is: 
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In SHM a(t) is proportional to the displacement but opposite in sign. 

•Motion in SHM: )cos()(   txtx m

The maximum value (amplitude) of velocity is xm. 

The phase shift of the velocity is p/2, making the 

cosine to a sine function. 

The 

acceleration 

amplitude is 

2xm.  

From Newton’s 2nd law: 
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15.3 Force Law for SHM 

The block-spring system shown 

on the right forms a linear SHM 

oscillator. 

 

The spring constant of the 

spring, k, is related to the 

angular frequency, , of the 

oscillator: 
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SHM is the motion executed by a system subject to a force that 

is proportional to the displacement of the system but opposite in 

sign. 



15.4: Energy in SHM 

The potential energy of a linear oscillator 

is associated entirely with the spring.  
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The kinetic energy of the system is 

associated entirely with the speed of 

the block. 
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The total mechanical energy of the 

system: 
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15.4: An Angular SHM 

The figure shows an  example of angular 

SHM. In a torsion pendulum involves the 

twisting of a suspension wire as the disk 

oscillates in a horizontal plane. 

 

The torque associated with an angular 

displacement of q is given by:  

q 

is the torsion constant, and depends 

on the length, diameter, and material 

of the suspension wire.  

The period, T, relates to  as: 
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T 2 Here, I is the rotational inertia of the 

oscillating disk. 



15.4: An Angular SHM 



15.6: Pendulums 

In a simple pendulum, a particle of mass 

m is suspended from one end of an 

unstretchable massless string of length L 

that is fixed at the other end. 

 

The restoring torque acting on the mass 

when its angular displacement is q, is: 
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 is the angular acceleration of the 

mass. Finally, 
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This is true for small angular displacements, q.  



15.6: Pendulums 

A physical pendulum can have a complicated distribution of 

mass. If the center of mass, C, is at a distance of h from the pivot 

point (figure), then for small angular amplitudes, the motion is 

simple harmonic.  

 

The period, T, is: 
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Here, I is the 

rotational inertia 

of the pendulum 

about O. 

In the small-angle approximation 

we can assume that q << 1 and 

use the approximation sin q   q 



q (degrees)  q (radians)  sin q 

   5   0.087   0.087 

10   0.174   0.174 

15   0.262   0.259  

(1% off) 

20   0.349   0.342  

(2% off) 

Conclusion: If we keep q < 10 °  we make less than 1 % 

error.                                                                             

15.6: Pendulums 

Let us investigate up to what 

angle  q  is the approximation 

reasonably accurate?  



15.7: SHM and uniform circular motion 

Consider a reference particle P’ moving in 

uniform circular motion with constant angular 

speed (w). 

 

The projection of the particle on the x-axis is 

a point P, describing motion given by: 
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This is the displacemnt equation of SHM.  

 

SHM, therefore, is the projection of 

uniform circular motion on a diameter of 

the circle in which the circular motion 

occurs. 


