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15.1 Osciliatory

motion 15.2 Simple Harmonic Motion

Motion which Is periodic in time, that is, motion that
repeats itself in time. Harmonic.

-X, 0 tx,
In the figure snapshots of a simple oscillatory T | L7 | )
system is shown. A particle repeatedly moves . 0
back and forth about the point x=0. I I -
=0 i i -
| L 0
The time taken for one complete oscillation is I ———
the period, T. In the time of one T, the system T T |
travels from x=+x,,, to —x.., and then back to g I !
Its original position X... =12 — AP i i
! ———] — !
The velocity vector arrows are scaled to (=57/4 — — |
indicate the magnitude of the speed of the | | ool
system at different times. At x=+x__, the T ! - )
| | ’4_ |

velocity is zero.

(a) -X,, 0 +x



15.2 Simple Harmonic Motion

bAoA £ Frequency of oscillation is the
1 &+ number of oscillations that are
| completed in each second.

T

! 1 The symbol for frequency is f, and
Il |4 the SI unit is the hertz (abbreviated
as Hz). 1
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If the motion is a sinusoidal function of time, it is called simple
harmonic motion (SHM). * X, IS the amplitude (maximum
displacement of the system)
X(t) =X, cos(at +¢) -tisthetime
o Is the angular frequency, and
1 ¢ Is the phase constant or phase

angle



15.2 Simple Harmonic Motion
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two SHM systems different in
) . periods,
N A P same
: N NN AN amplitude.
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(@) (b) and
different in _ oot amplitude,
amplitudes, same E NN different
period. 2wl 970 phase
T constants

The value of the phase constant term, ¢, depends on the value of
the displacement and the velocity of the system at time t = 0.



15.2 Simple Harmonic Motion
For an oscillatory motion with period T,
X(t)=x(t+T)

The cosine function also repeats itself when the argument
Increases by 2x. Therefore,

ot+T)=at +27

—>wl =27
—>a):2—ﬂ:27zf
T

Here, o Is the angular frequency, and measures the angle
per unit time. (: radians/second, ¢: radians)



15.2 Simple Harmonic

Motion
Motion in SHM:  X(t) = X, cos(at +¢) o

. dx(t) d - \ /
*The velocity of SHM: v()=—— :E[X”‘ cos(wt+g] I o W

m

—>V(t) =—wX,, sin(wt + ¢

+Hx,, -
The phase shift of the velocity is ©/2, making the
0

|
|
|
The maximum value (amplitude) of velocity is X, " |
|
. . . |
cosine to a sine function. |

Velocity

*The acceleration of SHM is: R
(b)
dv (t d _ " |
The a(t) = ®)_ [~ ox,sin(ot +9)] = 0%,
acceleration dt  dt E MJ'\
amplitude is — a(t) = -w’x,, cos(at + @) z 0 / \
(DZXm. N a(t) _ —0)2X(t) 2 —w?x, -

(¢)
In SHM a(t) is proportional to the displacement but opposite in sign.

From Newton’s 2" |aw:

F=ma=—-(me’)x =—-kx



15.3 Force Law for SHM

SHM is the motion executed by a system subject to a force that
IS proportional to the displacement of the system but opposite in

sign. _
The block-spring system shown

on the right forms a linear SHM
oscillator.

The spring constant of the
spring, kK, is related to the

angular frequency, o, of the

Block-spring SHM, amplitude, acceleration, phase constant

A '[1!]{]':1{ whose mﬂ:&ﬁ m is 680 g is fEStEﬂ?d toa EpriHEWhDSE (c) What is the maximum speed v,, of the oscillating block,
spring constant k is 65 N/m. The block is pulled a distance  and where is the block when it has this speed?

x = 11 cm from its equilibrium position at x = 0 on a fric-

tionless surface and released from rest at ¢ = (). (d) What is the magnitude a,, of the maximum acceleration
of the block?

(a) What are the angular frequency. the frequency, and the
period of the resulting motion? (e) What is the phase constant ¢ for the motion?

(f) What is the displacement function x(¢f) for the

(b) What is the amplitude of the oscillation? i
spring—Dblock system?



15.4: Energy in SHM

The potential energy of a linear oscillator
IS associated entirely with the spring.

Uty + K(1)

U(t) = % kx? = % kx,? cos?(wt + ¢)

Energy

The kinetic energy of the system is
associated entirely with the speed of K(
the block. 0 1/2 T

K (t) :%mv2 :%ma)zxm2 sin’(awt +¢):%kxm2 sin’(at + )

U(x) + K(x)

The total mechanical energy of the E
system:

U(x)

K(x)

E=U +K:%kxm2




15.4: Energy in SHM

Sample Problem

SHM potential energy, Kinetic energy, mass dampers

Many tall buildings have mass dampers, which are anti-sway
devices to prevent them from oscillating in a wind. The de-
vice might be a block oscillating at the end of a spring and
on a lubricated track. If the building sways, say, eastward,
the block also moves eastward but delayed enough so that
when it finally moves, the building is then moving back west-
ward. Thus, the motion of the oscillator is out of step with
the motion of the building.

Suppose the block has mass m = 2.72 % 1(F kg and is
designed to oscillate at frequency f = 10.0 Hz and with am-
plitude x,, = 20.0 cm. s

(a) What is the total mechanical energy E of the
spring—block system?

(b) What is the block’s speed as it passes through the equi-
librium point?



15.4: An Angular SHM

The figure shows an example of angular
SHM. In a torsion pendulum involves the
twisting of a suspension wire as the disk Wi one
oscillates in a horizontal plane.

Suspension wire

The torque associated with an angular

displacement of 0 is given by: L ererenceine
r=-K0 =
kis the torsion constant, and depends o

on the length, diameter, and material
of the suspension wire.
The period, T, relates to k as:

T zzﬂ\ﬁ Here, | is the rotational inertia of the
K oscillating disk.



15.4: An Angular SHM

Sample Problem

Angular simple harmonic oscillator, rotational inertia, period Suspeniﬁg

Figure 15-8a shows a thin rod whose length L is 12.4 cm and > g &P
whose mass m 1 135 g, suspended at its midpoint fromalong . |

wire. Its period T, of angular SHM is measured to be 253 s.

An irrepularly shaped object, which we call object X, is then (@ (1) Object X

hung from the same wire, as in Fig, 15-8b, and its period T}, is
found to be 4.76 5. What is the rotational inertia of object X
about its suspension axis?



15.6: Pendulums

In a simple pendulum, a particle of mass .o
m Is suspended from one end of an potnt
unstretchable massless string of length L

that is fixed at the other end.

L

‘-__;___-"'

The restoring torque acting on the mass
when its angular displacement is 0, Is:

r=-L(F,sinf) =la

o IS the angular acceleration of the

mass. Finally,
o= _ml_gl_e, and

T=27z\/E
9

This Is true for small angular displacements, 6.




15.6: Pendulums

A physical pendulum can have a complicated distribution of
mass. If the center of mass, C, is at a distance of h from the pivot
point (figure), then for small angular amplitudes. the motion is

simple harmonic.
O |
The period’ T, IS: Here, | IS the B/\
| rotational inertia |
T= Zﬂw/m—gh of the pendulum

about O.
ngine
In the small-angle approximation
we can assume that << 1 and

use the approximation sin 6 = 6




15.6: Pendulums

Let us investigate up to what
angle @ is the approximation
reasonably accurate?

6 (degrees) @ (radians) sin @
5 0.087 0.087
10 0.174 0.174
15 0.262 0.259
(1% off)
20 0.349 0.342
(2% off)
Conclusion: If we keep #< 10 ° we make less than 1 % . ,
\
error. \HI
In Fig. 15-11a, a meter stick swings about a pivot point at h nﬁ
one end, at distance h from the stick’s center of mass. Iy
(a) What is the period of oscillation T7 1ol 1“.5
Physical pendulum, period and length H‘

(b) What is the distance L, between the pivot point O of
the stick and the center of oscillation of the stick?

(a) (b)



15.7: SHM and uniform circular motion

Consider a reference particle P’ moving in
uniform circular motion with constant angular
speed (w).

The projection of the particle on the x-axis is
a point P, describing motion given by:

X(t) = X, cos(wt + @).

This is the displacemnt equation of SHM.

SHM, therefore, Is the projection of
uniform circular motion on a diameter of
the circle in which the circular motion
OCCUTrS.




