


Position and Displacement

Position of a particle

" Described by a position vector, with respect to a reference
origin.

F=xi+y +zk

Displacement

—_— —_ —_—
F

Ar =

2 1-

AT = (x3 — i + (32 — 71 + (z — 7k,

AT = Avi + Ay] + Azk




Example 1: Two-dimensional motion (rabbit position) =

40
A rabbit runs across a parking lot on which a set of ; To |Gf°at9_ H'_‘e
coordinate axes has, strangely enough, been drawn. The co- L rabbit, this is the
ordinates (meters) of the rabbit’s position as functions of ' /__41 -~ X component.
time 7 (seconds) are given by 0 20 40 | 80 x (m)
i e 0

x=—0314+72t + 28 (4-5) = |

and y=0222 - 9.11+ 30. (4-6) E3
|
(a) Atr =15 s what is the rabbit’s position vector 7 in unit- ~40 }
vector notation and in magnitude-angle notation? }
60—

KEY IDEA (a)

The x and v coordinates of the rabbit’s position. as given by This is the y component.
Egs. 4-5 and 4-6, are the scalar components of the rabbit’s

position vector 7.
y (m)

Calculations: We can write 40
F(1) = x(01 + v(1)]. (4-7)

(We write 7(¢) rather than 7 because the components are
functions of t. and thus 7 is also.)

20

At = 15 s.the scalar components are 0 g | * @
x=(—031)(15)*> + (7.2)(15) + 28 =66 m
and y = (0.22)(15)2 = (9.1)(15) + 30 = —57 m, =
SO T = (66 m)i — (57 m)j. (Answer) —40 105
which is drawn in Fig. 4-24. To get the magnitude and angle -
-60 155

of 7, we use Eq. 3-6:

\/'c v2 = V(66 m) + (=57 m)>

7 m, (Answer)

25s

(&) 20s

This is the path with
various times indicated.

=37
and 6= tan~! > = tan_l( Sl ) = —41°.  (Answer)
X 66 m



Average Velocity and Instantaneous Velocity

If a particle moves through a displacement of Ar in At
time, then the average velocity is:

displacement

average velocity = time interval ’
[

TR 1

Vavg o
In the limit that the At time shrinks to a single point in
time, the average velocity is approaches

instantaneous velocity. This velocity is the derivative
of displacement with respect to time.

d? d 7 - ~ d.l"? d\-’g dza» o -y +
= A 5= — - 2k =vid + v+ vk,
1 i v o (xi + vj + zk) d1‘1+ dr]+ drk x vl z

The direction of the instantaneous velocity v of a particle is always tangent to the
particle’s path at the particle’s position.

EJ




Example 2: Two-dimensional motion (rabbit velocity)

For the rabbit in the preceding Sample Problem, find the ve-
locity ¥ at time 7 = 155,

KEY IDEA

We can find v by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the v, part of Eq. 4-12 to
Eq.4-5. we find the x component of ¥ to be

dx d
== = = _3' 2 5 ?.-L
Vy 0 0 (=031 + 7.2¢ + 28)
= —0.62t + 7.2. (4-13)

At 1 =15 s, this gives v, = —2.1 m/s. Similarly, applying the
v, part of Eq.4-12 to Eq.4-6, we find

dy d
jo =t — (NN E = 0 14 3
Yy dt dt ( )

= 0441 — 9.1. (4-14)
At 1= 155, this gives v, = —2.5 m/s. Equation 4-11 then
yields

vV = (—=2.1m/s)i + (—2.5m/s)]. (Answer)

which is shown in Fig. 4-5. tangent to the rabbit’s path and in
the direction the rabbit is running at 7 = 15 s.

v=Vi2+ v = V(=21 m/s)? + (—2.5 m/s)?

=33m/s (Answer)

vy —25m/s
| = e —1(7)
anc o an ¥, an =

= tan~11.19 = —130°. (Answer)

Check: Is the angle —130° or —130° + 180° = 50°?
¥ (m)

40

20

—40

iy
—60

These are the xand y
components of the vector
at this instant.



Average and Instantaneous Accelerations

Following the same definition as in average velocity,

If we shrink At to zero, then the average acceleration value approaches to the instant
acceleration value, which is the derivative of velocity with respect to time:

— d » - -
- a=— (vel + vy + v.k)

dvy - N dvy, »  dv, -
= —1 - -
di dr 1T Tar




Example 3:Two-dimensional motion (rabbit run)

For the rabbit in the preceding two Sample Problems, find
he acceleration @ at time t = 15 s.

KEY IDEA

We can find @ by taking derivatives of the rabbit’s velocity
components.

dv,

= ! 2
a, i (.62 m/s~.

/
bt =
dt

Similarly, applying the a, part of Eq. 4-18 to Eq. 4-14 yields
the y component as

dv, d
i == (0441 — 9.1) = 044 m/s%.

-
Q

a=(—-0.62 misz)i + (0.44 mfsz)j. (Answer)

a=Va+a=V(-062m/s) + (0.44 m/s>)?
— 076 m/s2. (Answer)
For the angle we have

a, ]
- = tan‘]( = —35°
ﬂx

However, this angle. which is the one displayed on a calcula-

0.44 m/s?

0= tan
—(.62 m/s?

tor, indicates that @ is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that @ must
be directed to the left and upward. To find the other angle
that has the same tangent as —35° but is not displayed on a
calculator. we add 180°:

—35° + 180° = 145°. (Answer)

This is consistent with the components of @ because it gives
a vector that is to the left and upward. Note that @ has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.

y (m)

40

20

=)

These are the x and y
components of the vector
at this instant.



Projectile Motion

Projectile —a particle moves in a vertical plane with some
initial velocity but its acceleration is always the free-fall
acceleration which is downward.

This particle’s motion is called projectile motion.

Thrown ball
Bullet (ballistics considered as projectile motion)
Dropped package

Physics Chapter 3



Examples in sports:

Tennis
Baseball
Football

| dCrosse

Racquetball

Soccer.............



 In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that 15, neither motion affects the other.

A stroboscopic photograph of two golf balls.




More on Projectile Motion

The initial velocity of the projectile is:-

Here
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Projectile Motion Analyzed
(assuming no external forces other than the weight)

; Vertical
Horizontal Motion:
Motion: no acceleration

acceleration - g
A 4 A
iy ) |
Yy — V= vl — 381
X — ‘lli] — F':]T'ir — (l"[} Sill HU_)I T ‘]_ﬁgfz
X —Xp= [l’.[] COS ﬁ{]]f. vy = vy sin 6 — gt
vi = (vpsin 6y)* — 2g(v — ).

ﬂ By eliminating time, t:

gx*

y = (tan 6p)x —

2(vg cos 6)?




Horizontal Range (assuming no external forces)

The horizontal range of a projectile is the horizontal distance when
it returns to its launching height.

The distance equations in the x- and y- directions respectively:

Eliminating t;

o RS

The horizontal range R 1s maximum for a launch angle of 45°.




The Effects of the Air

|1r|. r 1-| :a ] !I rl-],.I.;-: __’_"';_‘t'l:"‘ H 5

FIG. 414 (1) The path of a fly bal
calculated by taking air resistance
into account. (11 ) The path the ball
would follow in a vacuum, calculated
by the methods of this chapter. See
Table 4-1 for corresponding data.
(Adapted from “The Trajectory of
aFly Ball.” by Peter J. Brancazio, The
Lhysics Teacher, January 1955.)

TABLE 4.1

Two Fly Ballss
Path I Path Il
{ Adr) { Vacuum)
Range 98.5 m 177 m
Maximum
height 530 m Tahm
Time
of fight hA5 s 753

25ee Fig. 4-14. The launch amge is 607 and

the launch speed 15 4.7 m/'s



CHECKPOINT

" A fly ball is hit to the outfield. During its flight (ignore the
effects of the air), what happens to its (a) horizontal and (b)
vertical components of velocity?

" What are the (c) horizontal and (d) vertical components of its
acceleration during ascent, during descent and at the topmost

point of its flight?



Example 4: Projectile Motion (Projectile dropped from airplane)

In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and
constant height 2z = 500 m toward a point directly over a
victim, where a rescue capsule is to land.

(a) What should be the angle ¢ of the pilot’s line of sight to
the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal
and vertical motions can be considered separately (we need
not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14. we see that ¢ is given by

¢ = tan ! % (4-27)
where x is the horizontal coordinate of the victim (and of
the capsule when it hits the water) and 7z = 500 m. We

should be able to find x with Eq.4-21:

x — xg = (vg COS Gyt (4-28)

Here we know that x, = 0 because the origin is placed at
the point of release. Because the capsule is released and
not shot from the plane, its initial velocity Vv, is equal to
the plane’s velocity. Thus, we know also that the initial ve-
locity has magnitude vy = 55.0 m/s and angle &, = 0°
(measured relative to the positive direction of the x axis).
However, we do not know the time ¢ the capsule takes to
move from the plane to the victim.

Flg. 4-14 A plane drops a rescue capsule while moving at con-
stant velocity in level flight. While falling, the capsule remains un-
der the plane.

To find ¢. we next consider the vertical motion and
specifically Eq. 4-22:
¥ — ¥o = (vosin Gp)r — Jgr’. (4-29)

Here the vertical displacement y — y, of the capsule is
—500 m (the negative value indicates that the capsule
moves downward). SO,

—500 m = (55.0 m/s)(sin 0°) — (9.8 m/s2)r2. (4-30)

Solving for ¢, we find r = 10.1 s. Using that value in Eq. 4-28
yields

x — 0= (55.0 m/s)(cos 0°)(10.1 s), (4-31)
LI = 5555 m.
Then Eq.4-27 gives us
5555 m
== = o mdhed Cabrlim —
&b tan 500 m 48.0°. (Answer)

(b) As the capsule reaches the water, what is its velocity v in
unit-vector notation and in magnitude-angle notation?

KEY IDEAS

(1) The horizontal and vertical components of the capsule’s
velocity are independent. (2) Component v, does not
change from its initial value v,, = v, cos 6, because there is
no horizontal acceleration. (3) Component v, changes from
its initial value vy, = vysin &, because there is a vertical
acceleration. )

Calculations: When the capsule reaches the water,
vV, = vpCOS &; = (55.0 m/s)(cos 0°) = 55.0 m/s.

Using Eq. 4-23 and the capsule’s time of fall ¢ = 10.1 s, we
also find that when the capsule reaches the water,

v, = v Sin 8, — gt (4-32)
= (55.0 m/s)(sin 0°) — (9.8 m/s?)(10.1 s)
= —99.0 m/s.
Thus, at the water
vV = (55.0 m/s)i — (99.0 m/s)j. (Answer)

Using Eq. 3-6 as a guide., we find that the magnitude and the
angle of v are

v=113 m/s and &= —060.9°. (Answer)



Example 5: Projectile Motion (Cannonball to pirate ship)

Figure 4-15 shows a pirate ship 560 m from a fort defending
a harbor entrance. A defense cannon, located at sea level,
fires balls at initial speed v, = 82 m/s.

(a) Atwhatangle f, from the horizontal must a ball be fired
to hit the ship?

KEY IDEAS

(1) A fired cannonball is a projectile. We want an equation
that relates the launch angle §, to the ball’s horizontal dis-
placement as it moves from cannon to ship. (2) Because the
cannon and the ship are at the same height, the horizontal
displacement is the range.

y Either launch angle

] gives a hit,

—

= R=560m =1
Fig. 4-15 A pirate ship under fire.

Calculations: We can relate the launch angle 6, to the
range R with Eq.4-26 which, after rearrangement, gives

1. . gR 1 . . (98mis?)(560m)
o= JRE i A 1
TR T (82 mis)?
1
= —-sin”! 0816, (4-33)

One solution of sin~' (54.7°) is displayed by a calculator; we
subtract it from 180° to get the other solution (125.3%). Thus,
Eq.4-33 gives us

6=27° and 6§, = 63"

(b) What is the maximum range of the cannonballs?

(Answer)

Calculations: We have seen that maximum range corre-
sponds to an elevation angle 6, of 45°. Thus,

(82 m/s)?
9.8 m/s’
= 686 m = 690 m.

R=—""sin2¢, = sin (2 X 45%)
g

(Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together, eventually merging
at 6y =45° when the ship is 690 m away. Beyond that dis-
tance the ship is safe. However, the cannonballs could go
farther if the cannon were higher.



Home Exercise

A policeman chases a thief across city rooftops. They are both running at 5
m/s when they come to a gap between buildings that is 4 m wide and has a
drop of 3 m.

The thief leaps at 5 m/s at an angle of 45°. Does he clear the gap?
The policeman leaps at 5 m/s horizontally. Does he clear the gap?

ix=0




Uniform Circular Motion

The speed of
the particle is
constant

Uniform

circular
motion

A particle
travels
around a
circle/circular
arc




More on Uniform Circular Motion

As the direction of the velocity of the particle changes, there is an
acceleration!!!

CENTRIPETAL (center-seeking)
ACCELERATION

a = T (centripetal acceleration), Tr= . (penod).

The acceleration vector
always points toward the
center.

7\

%
The velocity \T“;

vector is always
tangent to the path.

v
p———
i

‘-.\' /Inl




Centripetal acceleration, proof of a = v2/r 2

V =i+ vj=(—vsin0)i + (v cos 0)].

| i
. Vvp |- VXp |\~ g )
r ¥
- {a) |
ﬁzﬂz(;ﬂ); (*f ﬂ’*p)i
dt roodt roodt v
2 g!\r_!.

= . o
a = i ; H (8)
=) d = (—— COS 6)1 + (—— sin H)]. -
r r
> V2 iz p2 2
—MIZVﬁi—kﬁ;;:T\/(cosﬁ)z—k(sinﬁ)zz—\/T:— °
: r r 2/
o 1%
ay  —(v¥r)sinf ] *

== fan¢ — tan 6.

a, —(v¥r)cos®

(e)



Example 6:Uniform Circular motion (top gun pilots)

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases. leading to loss of brain
[unction.

There are several warning signs. When the centripetal
acceleration is 2g or 3g. the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of ¥, = (4001 + Sﬂi}j ) m/s and 24.0 s later leaves the
turn with a velocity of v, = (—400i — 500}) m/s?

KEY IDEAS

We assume the turn is made with uniform circular
motion.

Then the pilot’s acceleration is centripetal and has
magnitude a given by a=v*/R.

—
'_Ea—."

Also, the time required to complete a full circle
is the period given by  T=2gR/v

Calculations:
Because we do not know radius R, let’s solve for R
from the period equation for R and substitute into

the acceleration eqn.
27v
—

{a =

Speed v here is the (constant) magnitude of the
velocity during the turning.

v = V(400 m/s)2 + (500 m/s)2 = 640.31 m/s.

To find the period T of the motion, first note that
the final velocity is the reverse of the initial
velocity. This means the aircraft leaves on the
opposite side of the circle from the initial point
and must have completed half a circle in the given
24.0s. Thus a full circle would have taken T 48.0
S.

Substituting these values into our equation for g,
we find

 2m(640.31 m/s)
B 48.0's

a = 83.81 m/s? =~ 8.6¢. (Answer)



Relative motion in one-dimension(1-D)

‘The velocity of a particle depends on the reference frame of
whoever is observing the velocity.’

Suppose Alex (A) is at the origin of frame A
(as in Fig.), watching car P (the “particle”)
speed past.

Suppose Barbara (B) is at the origin of frame

B, and is driving along the highway at constant

speed, also watching car P. Suppose that they
both measure the position of the car at a
given moment. Then:

where X, is the position of P as measured by A.
Consequently,

Also, d d d

ar (vpa) = r7 (vpg) + ar (vga)-

Since vy, is constant, the last term is zero and we
have

App = App.

¥

Frame A

Lt

¥

,-r""’f}

Frame B

_,
Y=
-
o
3

.THIJJ

XpA = Xpp+ XpA



Example 7: Relative motion, 1-D (Barbara and Alex)

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant vy, = 52 km/h and car P is moving in the nega-
tive direction of the x axis.

(a) If Alex measures a constant vy, = —78 km/h for car P,
what velocity vp, will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq.4-41 (vpy = vpg + vy ) to relate vpg to vpy and vyy.

Calculation: We find
—T78 km/h = vpgz + 52 km/h.

Thus, vpg = —130 km/h. (Answer)

Comment: 1If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time r = 10 s at constant acceleration,
what is its acceleration a, relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative to Alex. Because the

acceleration is constant, we can use Eq. 2-11 (v = v, + ar) to
relate the acceleration to the initial and final velocities of P.

Calculation: The initial velocity of P relative to Alex is
vpy = — 78 km/h and the final velocity is 0. Thus, the acceler-
ation relative to Alex is

1 m/s
3.6 km/h

(Answer)

_v—v, _ 0—(=78km/h)
@pa ="~ 10s

= 2.2 m/s%,

(c) What is the acceleration app of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vpz = —130 km/h). The final velocity of
P relative to Barbara is —52 km/h (this is the velocity of the

stopped car relative to the moving Barbara). Thus,

_v—v, —52km/h — (—130km/h) 1m/s
e 10s 3.6 km/h
= 2.2 m/s%, (Answer)

Comment: We should have foreseen this result: Because
Alex and Barbara have a constant relative velocity, they
must measure the same acceleration for the car.



Relative motion in two-dimensions(2-D)

A and B, the two observers, are watching P, the moving particle, from their origins of
reference. B moves at a constant velocity with respect to A, while the corresponding

axes of the two frames remain parallel. r,, refers to the position of P as observed by A,
and so on. From the situation, it is concluded:

S

j’_} — — —
Ypa = Fpp T Tpa

Tpe l

— —_—
Vpa = Vpg T Vpa

/ YRA
. |

Frame B

—_— . —_—
dpqg = dpp.

Frame A



Example 8: Relative motion, 2-D (Airplanes)

In Fig. 4-20a, a plane moves due east while the pilot points
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity v gy relative
to the wind, with an airspeed (speed relative to the wind)
of 215 km/h. directed at angle # south of east. The wind
has velocity vy relative to the ground with speed 65.0
km/h. directed 20.0° east of north. What is the magnitude of
the velocity v of the plane relative to the ground, and
what is 7

KEY IDEAS

The situation is like the one in Fip. 4-19. Here the moving par-
ticle P 1s the plane, frame A 1s attached to the ground (call it
(7).and frame B is “attached” to the wind (call it W). We need

a vector diagram like Fig. 4-19 but with three velocity vectors.

Calculations: First we construct a sentence that relates the
three vectors shown in Fig. 4-20b:

velocity of wind
relative to ground.

(WG)

veloaty of plane  _ velocity of plane
relative to ground  relative to wind
(PG) (PW)
This relation 1s written in vector notation as
(4-46)

Vg = Vpw T Vg

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

Vpgy = Vewy T Vigy
or 0= —(215 km/h)sin # + (65.0 km/h)(cos 20.0%).
Solving for ¢ gives us

.y (65.0 km/h)(cos 20.0%)
— gin ™
215 km/h

= 16.5° (Answer)

Similarly, for the x components we find

Vegs = Vews + Vo

Here, because Vp; is parallel to the x axis, the component

Vpay 15 equal to the magnitude vy, Substituting this nota-
tion and the value # = 16.5°, we find

Ve = (215 km/h)(cos 16.5°) + (65.0 km/h)(sin 20.0°)

= 228 km/h. (Answer)
N This is the plane's actual
direction of travel,
Vg
P E
» N
This is the plane's L,
. . : ]
orentation. F iy
This is the wind
direction.
[a)
1 =
Ve
X

The actual direction

is the vector sum of

the other two vectors

(head-to-tail arrangement).

)

Fig. 4-20 A plane flying in a wind.



