Chapter 9

Center of Mass and
. LInear Momentum




9.2 The Center of Mass

The center of mass of a X * Sy
system of particles is the il "’*;\
point that moves as though ari e

(1) all of the system’s mass
were concentrated there and

(2) all external forces were

applied there. The center of mass (black dot)
of a baseball bat flipped into

the air follows a parabolic
path, but all other points of the
bat follow more complicated
curved paths.



9.2 The Center of Mass: A System of Particles

b,
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9.2 The Center of Mass: A System of Particles

Consider a situation in which n particles are strung out along
the x axis. Let the mass of the particles are m;, m,, ....m_, and
let them be located at x,, X,, ...x, respectively. Then if the
total mass is M = m;+ m, + ...+ m_, then the location of the

center of mass, X, 1S

MiXy + My Xy + M3Xy + = + M, X,

Xeom —
M

1 n
= T E m;Xx,.
M i=1



9.2 The Center of Mass: A System of Particles

In 3-D, the locations of the center of mass are given by:

The position of the center of mass can be expressed in vector notation as:

'F{.‘-DI'I'I - '1'!:.'I.'.H.'_'III'I'I1 + .H.'.:Dl'll.l + Emmk'
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9.2 The Center of Mass: Solid Body

In the case of a solid body, the “particles” become
differential mass elements dm, the sums become integrals,
and the coordinates of the center of mass are defined as

| 1 1
xmm:ﬂjxdmv ymmzﬂfydm: me:ﬂjzdm

where M 1s the mass of the object.

dm M’

If the object has uniform density, r, defined as: = =

|
Then xmm:?jxdva ycum:—jydv Zcum:_fzdv

Where V 1s the volume of the object.
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Sample problem, COM

Figure 9-3a shows a uniform metal plate P of radius 2R from
which a disk of radius R has been stamped out (removed) in
an assembly line. The disk is shown in Fig. 9-3b. Using the xy
coordinate system shown, locate the center of mass comp of
the remaining plate.

Fig. 9-3
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Sample problem, COM of 3 particles

Three particles of masses m; = 1.2 kg, m, = 2.5 kg, and
my = 3.4 kg form an equilateral triangle of edge length
a = 140 cm. Where is the center of mass of this system?

2

This is the position

1o ~ vector g for the
e com (it points from
the origin to the com).
100

50—

Yeom

my 5o Yom 100

We are given the following data:

Particle Mass (kg) x (cm) y(cm)
1 1.2 0 0
2 25 140

3 34 70 120




9.3: Newton’s 279 Law for a System of Particles

The vector equation that governs the motion of the center
of mass of such a system of particles 1is:

Fo. = Magqn (system of particles).
— Fnet._r - Mﬂmm‘x Fnetky = Mﬂcnm*}a Fnel.z - M”cum.z*

Note that: The internal forces of the

1. F . 1s the net force of all external explosion cannot change
forces that act on the system. Forces i sathiokthe onin

on one part of the system from
another part of the system (internal
forces) are not included

2. M i1s the total mass of the system.
M remains constant, and the system
is said to be closed.

Fig. 9-5 A fireworks rocket explodes in
flight. In the absence of air drag, the center
3. Acom 1S the acceleration of the of mass of the fragments would continue to

center of mass of the system follow the original parabolic path, until
fragments began to hit the ground.
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9.3: Newton’s 2"? Law for a System of Particles: Proof of final result

—

" For a system of n particles, M Foom = 1171 + Moty + misry + - - - + m,r,,.

where M is the total mass, and r; are the position vectors of the masses m..

: Differentiating, MFCDI]‘[ — mlﬁl + mgﬁz + m3ﬁ§ === mnﬁ;.
where the v vectors are velocity vectors.
* This leads to Ma.om = ma; + npa, + msay + - - - + m,a,.

" Finally, Ma_’mm:f‘l+E+E+..._|_F

Hi

What remains on the right hand side is the vector sum of all the external forces that
act on the system, while the internal forces cancel out by Newton’s 3™ Law.



Sample problem: motion of the com of 3 particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F; = 6.0 N, F;, = 12 N, and F; = 14 N. What
is the acceleration of the center of mass of the system, and in

what direction does it move?
y

Fig.9-7 ¢

The com of the system
will move as if all the
mass were there and

the net force acted there.




9.4: Linear momentum
DEFINITION:
p = mv (linear momentum of a particle)
in which m 1s the mass of the particle and v 1s its velocity.

The time rate of change of the momentum of a particle 1s equal to the
net force acting on the particle and 1s 1n the direction of that force.

¢ _dF
net dr g
Manipulating this equation:
— dp d dv

Fnet_

=—(mv)=m

= = mad. g Qnd
7 ar ar (Newton’s 2%¢ Law)



9.5: Linear Momentum of a System of Particles

The linear momentum of a system of particles 1s equal to the product of
the total mass M of the system and the velocity of the center of mass.

—

P = MFEGm (linear momentum, system of particles),

!

The time rate of change of the momentum of a particle 1s equal to the
net force acting on the particle and 1s 1n the direction of that force.

~  dP

— ——— system of particles),
net df ( )
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The collision of a ball with a bat collapses
part of the ball. (Pheto by Harold E.
Edgerton. ©The Harold and Esther
Edgerton Family Trust, courtesy of Palm
Press, Inc.)

Fig. 9-8 Force F’(r) acts on a ball
as the ball and a bat collide.

In this case, the collision is brief, and the
ball experiences a force that 1s great
enough to slow, stop, or even reverse its
motion.

The figure depicts the collision at one
instant. The ball experiences a force F(t)
that varies during the collision and changes
the linear momentum of the ball.



9.6: Collision and Impulse

The change 1n linear momentum 1s related to the force by Newton’s
second law written 1n the form

F = dpldt.
Iy r
— J dﬁZJ F(r) dt.
7 f
—» '
—) J = f F(t) dt (impulse defined).
L

The right side of the equation 1s a measure of both the magnitude
and the duration of the collision force, and 1s called the impulse of
the collision, J.



9.6: Collision and Impulse
Fig. 9-9 (a) The curve shows the magni-

The impulse in the collision tude of the ime-varying force F() that acts
is equal to the area under on the ball in the collision of Fig. 9-8.The
the curve. area under the curve 1s equal to the magni-
F tude of the impulse J on the ballin the colli-
F1) sion. (b) The height of the rectangle repre-
J sents the average force F,,, acting on the ball

over the time interval Az. The area within the
rectangle is equal to the area under the curve
in (a) and thus is also equal to the magnitude
| of the impulse 7 in the collision.

Instead of the ball, one can focus on the

: bat. At any instant, Newton’s third law
The average force gives
the same area under the says that the force on the bat has the same
curve. magnitude but the opposite direction as the
force on the ball.

Favg
J
| L, That means that the impulse on the bat has
l ty the same magnitude but the opposite
5 AL L direction as the impulse on the ball.

(&)
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9.6: Collision and Impulse: Series of Collisions

—lp
-0-0-0-0-0-0-0f

Target —X
Projectiles '

=l =

Fig. 9-10 A steady stream of projectiles,
with identical linear momenta, collides with
a target, which is fixed in place. The average
force F,,, on the target is to the right and
has a magnitude that depends on the rate at
which the projectiles collide with the target
or, equivalently, the rate at which mass col-
lides with the target.

Let n be the number of projectiles that collide in a
time interval At.

Each projectile has initial momentum mv and
undergoes a change Ap in linear momentum
because of the collision.

The total change in linear momentum for n
projectiles during interval At is nAp. The
resulting impulse on the target during At is along
the x axis and has the same magnitude of nAp but
is in the opposite direction.

J=—nAp.

J n n
Foo.=—=—""Ap=——"-mAv.
e Ar At Ar Y

In time interval At, an amount of mass Am =nm
collides with the target.

Am
Favg = — A Av.
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Sample problem: 2-D impulse

Race car—wall collision. Figure 9-11a is an overhead view of
the path taken by a race car driver as his car collides with the
racetrack wall. Just before the collision, he is traveling at
speed v; = 70 m/s along a straight line at 30° from the wall.
Just after the collision, he is traveling at speed vy = 50 m/s
along a straight line at 10” from the wall. His mass m 1s 80 kg.

(a) What is the impulse J on the driver due to the collision?

(b) The collision lasts for 14 ms. What is the magnitude of
the average force on the driver during the collision?

The impulse on the car
¥ is equal to the change
in the momentum.

Fig. 9-11 The collision
¥ changes the
momentum.
Wall
— X —
30° Path 3
10 f 10°

(a) (b)

— X
/--1050




9.7: Conservation of Linear Momentum

If no net external force acts on a system of particles, the total
linear momentum, P, of the system cannot change.

—

P = constant (closed, isolated system).

!

If the component of the net external force on a closed system 1s
zero along an axis, then the component of the linear momentum
of the system along that axis cannot change.

—_

P = ﬁf (closed, isolated system).

total linear momentum _ [ total linear momentum
at some Initial time 1, at some later time f;
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Sample problem: 1-D explosion

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity v; of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b). The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed v, between the hauler and the mod-
ule is 500 km/h. What then is the velocity vy of the hauler rela-
tive to the Sun?

The explosive separation Fig. 9-12
can change the momentum

of the parts but not the

momentum of the system.

—_

— e —
LTI —===— VS

= Vv,
T—— \—Hauler ——
0.20M 0.80M

Cargo module

(a) (&)



Sample problem: 2-D explosion

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M. initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M. has final speed v, = 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?
(b) What is the speed of piece A?

Fig. 9-13 The explosive separation
can change the momentum
of the parts but not the
momentum of the system. y




9.8: Momentum and Kinetic Energy in Collisions

In a closed and isolated system, 1f there are two colliding bodies, and
the total kinetic energy 1s unchanged by the collision, then the
kinetic energy of the system is conserved (it 1s the same before and
after the collision). Such a collision is called an elastic collision.

If during the collision, some energy 1s always transferred from
kinetic energy to other forms of energy, such as thermal energy or
energy of sound, then the kinetic energy of the system 1s not
conserved. Such a collision 1s called an inelastic collision.




9.9: Inelastic collisions in 1-D
In a completely inelastic

Here is the generic setup collision, the bodies

: : e stick together.
for an inelastic collision.
7
Body 1 Body 2 Before =P Vo; =0
Vi Vy; O 9 *
Before —— o> — my mso
', o i Projectile  Target
After —_—
— i OG’ X
VU’ vgf ny + ??IE
After — — ) :
. e X Fig. 9-15 A completely inelastic
m gy collision between two bodies. Before the

collision. the body with mass m, is at rest
and the body with mass m1; moves directly
toward it. After the collision, the stuck-
together bodies move with the same
velocity V.

Fig. 9-14 Bodies 1 and 2 move along an
x axis, before and after they have an inelas-
tic collision.

myvy; = (my + my)V
mMyvy; + MyVy = My + MyVop
ny

V — 1"”.
my + n»




9.9: Inelastic collisions in 1-D: Velocity of Center of Mass

The com of the two

bodies 1s between
them and moves at a

constant velocity.

—

P

my + niy

P t Pa
my + M,

—

VCDITI

Here is the
incoming projectile.

Collision!

The com moves at the
same velocity even after
the bodies stick together.

M,

Here is the
stationary target.

Fig. 9-16 Some freeze frames
of a two-body system, which
undergoes a completely inelastic
collision. The system’s center of

”é[[}m‘ © ™ mass is shown in each freeze-frame.

/ "-@_;= %m  The velocity v, of the center of

L mass 1s unaffected by the collision.
o> Because the bodies stick together

after the collision, their common
velocity V must be equal to v .
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Sample problem: conservation of

momentum

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M = 5.4 kg, hanging from two long cords. A bullet of
mass /m = 9.5 g is fired into the block, coming quickly to rest.
The block + bullet then swing upward, their center of mass
rising a vertical distance /i = 6.3 ¢cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

There are two events here.
The bullet collides with the
block. Then the bullet—-block
system swings upward by
height A.

m
Ep o O
' i

Fig. 9-17 A ballistic pendulum, used to measure the speeds of

bullets.



9.10: Elastic collisions in 1-D

Here is the generic setup
for an elastic collision with
a stationary target.

Before Vii
—D  vy,;=0
?ﬁ «.% > In an elastic collision, the Kinetic
Projectile  Target energy of each colliding body may
Vi Vo change, but the total Kinetic energy
e Q_b Q—l‘; of the system does not change.
my ]

Fig. 9-18 Body | moves along an x axis
before having an elastic collision with body
2.which is initially at rest. Both bodies
move along that axis after the collision.



9.10: Elastic collisions in 1-D:
Stationary Target

mMyvy; = myvip+ MpVys

1

2

”11"%3 =

2

myvi; + sm,vy;

(linear momentum).

(kinetic energy).

Here is the generic setup
for an elastic collision with

a stationary target.
Before ﬂ,—
'_D' T;E‘! = U’
O O x
i | L
Projectile ~ Target

After ‘gf

my -

Fig. 9-18 Body | moves along an x axis
before having an elastic collision with body
2. which is initially at rest. Both bodies
move along that axis after the collision.



9.10: Elastic collisions in 1-D:
Moving Target

HFIPH + ”121"2,‘ — Hllplf + H?EPE}F"

Here is the generic setup 1 v, | 2 I 2 1 2
genercsetwp 1, 2 4 1, 2 — Ly 2 4 Ly 2
ot enielaet eollsonanl|l 27 C1V tala; FRVf T gV as

a moving target.

Vi Vo
ﬂ h

. ) x

my Mo

Fig. 9-19 Two bodies headed for a one-
dimensional elastic collision.

nly — M, 2n1,
5 ¥ Vi Va;
ny + nis my + ms
2n1 My — My
3 — F _I_ '
Vor = Vii V-

my+m, = m+m,
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Sample problem: two pendulums

‘Two metal spheres, suspended by vertical cords, initially just
touch, as shown in Fig. 9-20. Sphere 1, with mass
my = 30 g, 1s pulled to the left to height &, = 8.0 cm, and
then released from rest. After swinging down, it undergoes
an elastic collision with sphere 2, whose mass m, =75 g.
What is the velocity vyyof sphere 1 just after the collision?

4

e L e 1 e el T e G
¥ ﬂ:l""_! :bﬁ‘.‘rji '-:1‘1?? \;‘11.9‘_.’} \'"‘.‘r?‘ et
7 )




9.11: Collisions in 2-D

A glancing collision p" D _ D D
: '+ P,=B,+ By
that conserves B L 8 1f 2
both momentum and ‘V If elastic,
kinetic energy.
)
Hf Kli + Kg,‘ = K1f + Kgf.
e _,f’/\ﬂﬁ
:} X
m Fh. \<}1 vy = fﬂllf'lf COS 61 + fﬂgl"gf COS 63..
3 0 = —myvipsin 6 + myvy sin 6.
?N
Fig. 9-21 An elastic collision between Also,

two bodies in which the collision is not ! . I 5 { 5
head-on. The body with mass m, (the tar- SN VY = I Vir T M2 Var
get) 1s initially at rest. _
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9.12: Systems with Varying Mass: A Rocket

The ejection of mass from
the rocket's rear increases
the rocket's speed.

/— System boundary ra System boundary
M v —dM M+ dM vLdv
D ) \ Ut :

(a) x (b)

Fig. 9-22 (a) An accelerating rocket of mass M at time . as seen from an inertial
reference frame. (b) The same but at time t + dt. The exhaust products released during
interval dr are shown.
The system here consists of the rocket and the exhaust products released during interval dt.
The system is closed and isolated, so the linear momentum of the system must be conserved
during dt, where the subscripts i1 and f indicate the values at the beginning and end of time

interval dt.
P=pP, == My=—-dMU-+ M+ dM)(v+ dv)

velocity of rocket) [ velocity of rocket velocity of products
relative to frame /  \relative to products relative to frame

+dv) = v + U.
v+ dv) = Ve = ald Veel = i ==  Rvp=Ma
U=v+dv—rv,. dt dt



9.12: Systems with Varying Mass: Finding the velocity

dM
dv = —vy—
} 1['E| M
vr My dM
d ¥ f— — ¥ —.I
J; v L[’El ME M

in which M; 1s the 1nitial mass of the rocket and M; its final mass.
Evaluating the integrals then gives

M,
M;

F}r - L’é — 1;[’E| lI‘l

for the increase 1n the speed of the rocket during the change 1n
mass from M. to M.



Sample problem: rocket engine, thrust, acceleration

A rocket whose initial mass M, is 850 kg consumes fuel at
the rate R = 2.3 kg/s. The speed v, of the exhaust gases rel-
ative to the rocket engine is 2800 m/s. What thrust does the
rocket engine provide?

KEY IDEA

Thrust 7" is equal to the product of the fuel consumption
rate R and the relative speed v, at which exhaust gases are
expelled, as given by Eq. 9-87.

Calculation: Here we find

T = Rv, = (2.3 kg/s)(2800 m/s)
= 6440 N = 6400 N. (Answer)

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust 7 of a rocket to the magnitude a of
the resulting acceleration with 7 = Ma, where M is the

rocket’s mass. However, M decreases and « increases as fuel
1s consumed. Because we want the initial value of @ here, we
must use the intial value M, of the mass.

Calculation: We find
T 6440 N _
a= m == ke = 7.6 m/s%. (Answer)

To be launched from Earth’s surface, a rocket must have
an initial acceleration greater than g = 9.8 m/s?. That is, it
must be greater than the gravitational acceleration at the
surface. Put another way, the thrust T of the rocket engine
must exceed the initial gravitational force on the rocket,
which here has the magnitude M;g, which gives us

(850 kg)(9.8 m/s?) = 8330 N.

Because the acceleration or thrust requirement is not met
(here T'= 6400 N), our rocket could not be launched from
Earth’s surface by itself; it would require another, more
powerful, rocket.



